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The effects of applying an electric field to an ionic autocatalytic reaction with a cubic
rate law are discussed. The constant field strength approximation is made and the resulting
equations for the model examined by first considering the corresponding travelling wave
equations. These show ranges of field strength over which travelling waves do not exist,
these ranges being dependent on whether D > 1 or D < 1, where D is the ratio of dif-
fusion coefficients of autocatalyst and substrate. Numerical simulations of the full system
are obtained and these show that, when travelling waves exist, these are formed as the long
time behaviour of the system. When travelling waves do not exist, complete electrophoretic
separation of the reacting ionic species results, forming separate fronts in autocatalyst and
substrate, their direction of propagation depending on D. Comparisons with a related prob-
lem with a quadratic rate law are made and the implications for experiments based on the
iodate–arsenous acid reaction assessed.

1. Introduction

In a series of recent papers [12,19,21–23] we have considered the effects that
applying an electric field can have on the reaction fronts that propagate in a simple
autocatalytic system. The basis for these models was a reaction, with a quadratic rate
law, between two ionic components, a substrate A+ and an autocatalyst B+ (say).
Further non-reacting species were also included in the model, with at least one more
negatively charged species being necessary to maintain electroneutrality. The system
was subjected to an applied electric field through the current being maintained at a
constant value.

In [22,23] we considered the basic three-species model where we showed that,
depending on the strength and direction of the applied electric field and whether
D > 1 or D < 1 (where D = DB/DA is the ratio of the diffusion coefficients
of autocatalyst (DB) and substrate (DA)), considerable modifications were possible
to the front wave which would propagate in the absence of the electric field. These
effects included propagating electrophoresis waves where the reaction is virtually ex-
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tinguished, wave splitting whereby two, counter-propagating reaction fronts develop,
and, in relatively strong fields with D < 1, a new type of travelling front propagating
against the direction induced by the applied field and in which large concentrations
of both substrate and autocatalyst (and hence a much enhanced reaction rate) are
achieved.

The effects of including further ionic components were considered in [19,21]
where it was shown that there is a transition from the behaviour observed in the three-
species model to that which results when the high ionic strength approximation is
made. In this approximation the reacting species are assumed to make only a small
contribution to the overall ionic balance, allowing the electric field to be taken as a
constant. This approximation is used extensively in modelling electric field effects on
kinetically more complex systems. A formal justification for making this approxima-
tion has been given in [12], where the implications for the autocatalytic model were
fully discussed. An additional feature present in these slightly more extended models
is the possibility of complete electrophoretic separation of the reacting components.
A variant of our original model, in which the autocatalyst is a non-ionic species, has
been treated in [3]. In this case wave separation and stopping are seen, whereby elec-
trophoretic separation of substrate and autocatalyst occurs with a stationary front in
the autocatalyst being formed.

All these previous studies were based on quadratic autocatalysis. This gave the
advantage of being able to calculate the wave speed explicitly from the travelling
wave equations, using essentially a minimum-speed criterion. Thus the conditions for
the non-existence of kinetic fronts could readily be found with the behaviour in these
cases then determined from numerical simulations of the original initial-value problem.
Here we consider the analogous problem with cubic autocatalytic kinetics and, for
simplicity, we make the high ionic strength (constant field) approximation. We start by
considering the travelling wave equations, which we now have to solve numerically to
determine the wave speed as well as the conditions for the existence of solution (again
finding qualitatively different forms depending on whether D > 1 or D < 1). We
concentrate mostly on the differences between the present case and the corresponding
model with quadratic autocatalytic kinetics [12]. We then complement this discussion
with numerical simulations of the initial-value problem, paying particular attention to
cases where we have predicted that travelling wave solutions do not exist. Finally,
we assess the consequences of our theoretical predictions from our simple model for
the experimental observations on electric field effects on propagating fronts in the
iodate–arsenous acid reaction.

2. Equations

We consider a cubic autocatalytic reaction between the ionic chemical species
A+ and B+, namely

A+ + 2B+ → 3B+, rate kab2, (1)
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in a reactor which is taken to be one-dimensional with the electric field being applied
in the positive x-direction. The governing equations are derived from the mass balance
equations for general reacting ionic systems given by Snita and Marek [20], coupled
with the assumption of local electroneutrality. The ionic strength of the reaction
mixture is assumed to be sufficiently large for the constant field approximation to be
made. The resulting equations are made dimensionless using a0, the initial (constant)
concentration of the substrate A+, as a concentration scale, and then using (ka2

0)−1 and
(DA/ka

2
0)1/2 as time and length scales, respectively. This leads to the (dimensionless)

equations

∂a

∂t
=
∂2a

∂x2 −E
∂a

∂x
− ab2, (2)

∂b

∂t
=D

∂2b

∂x2 −DE
∂b

∂x
+ ab2 (3)

in terms of the constant (dimensionless) electric field E (which can be either positive
or negative) and where D = DB/DA. A more detailed derivation of the equations for
our model is provided in [12,19,23] (with an obvious change from quadratic to cubic
autocatalysis) and with a full justification for making the constant field approximation
being given in [12].

The initial conditions that we take in the numerical simulations are that

a = 1 at t = 0, for all x, (4)

with some B+ introduced locally. We then allow two symmetric, counter-propagating
waves to develop fully before the electric field is switched on. This is how previous
experiments on electric field effects on reaction systems were conducted (see [15–
17,21], for example). It also allows us to treat both positive and negative values
of E in the same numerical simulation, the effect of positive E being seen on the
waves propagating to the right (positive x-direction) and the effect of negative E
on waves propagating to the left in the negative x-direction. Finally, we assume that
the reactor is sufficiently long for end effects to be neglected, applying the boundary
conditions

∂a

∂x
→ 0,

∂b

∂x
→ 0, as |x| → ∞, t > 0. (5)

However, before we discuss the numerical simulations we consider the travel-
ling wave equations arising from equations (2), (3). Our previous studies [3,12,
19,21–23] have shown that a consideration of the appropriate travelling wave
equations is a necessary prerequisite for understanding and interpreting the re-
sults of the numerical simulations. We find that similar considerations apply
here.
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3. Travelling waves

A travelling wave of permanent form is a nonnegative, nontrivial solution to
equations (2), (3) written in terms of the single travelling co-ordinate ζ = x − vt,
where v is the constant wave speed, approaching uniform concentrations at its rear.
This leads us to consider the ordinary differential equations

a′′ + (v −E)a′ − ab2 = 0, (6)

Db′′ + (v −DE)b′ + ab2 = 0 (7)

on −∞ < ζ <∞ (where primes denote differentiation with respect to ζ).
We assume that the wave is propagating into the unreacted part of the reactor.

The conditions to be satisfied ahead of the wave are then

a→ 1, b→ 0 as ζ →∞. (8)

Boundary condition (8) then leads, from equation (7), to the requirement that

v −DE > 0. (9)

It is readily established, using methods deployed previously for similar travelling
wave equations [2,9,12], that

a 6≡ 1, b 6≡ 0 in the wave, (10)

a > 0, b > 0 on −∞ < ζ <∞. (11)

We now determine the conditions that must hold at the rear of the wave. We
assume that a → as, b → bs as ζ → −∞ (where at least one of the constants as,
bs must be zero). If we now apply

∫∞
−∞ . . . dζ to equation (7) and use boundary

condition (8) and result (11), we obtain

(v −DE)bs =

∫ ∞
−∞

ab2 dζ > 0. (12)

From (9) it then follows that bs > 0 and, consequently, that

a→ 0, b→ bs as ζ → −∞, (13)

where bs is some constant concentration of B+ to be determined and which will depend
on the parameters of the system.

If we now apply
∫∞
−∞ . . . dζ to equation (6), using boundary conditions (8), (13),

we obtain

(v −E) =

∫ ∞
−∞

ab2 dζ > 0, (14)
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which provides a stronger condition than (9) if D < 1. Conditions (9), (14) and
result (11) also allow us, by writing equations (6), (7) in the form

a′ = e−(v−E)ζ
∫ ζ

−∞
e(v−E)ζab2 dζ ,

(15)

b′ = − 1
D

exp

(
− (v −DE)ζ

D

)∫ ζ

−∞
exp

(
(v −DE)ζ

D

)
ab2 dζ ,

to establish that

a′ > 0, b′ < 0 on −∞ < ζ <∞. (16)

A further result can be obtained if we add equations (6), (7), integrate once with
respect to ζ and apply boundary conditions (8), to get

a′ +Db′ + (v −E)a+ (v −DE)b = (v −E). (17)

Applying boundary conditions (13) then gives

bs =
v −E
v −DE = 1 +

(D − 1)E
v −DE . (18)

Expression (18), with (9), shows that bs > 1 if D > 1, E > 0 or D < 1, E < 0
and that bs < 1 if D > 1, E < 0, or D < 1, E > 0.

To calculate the wave speed v for general values of D and, hence, bs from
expression (18), we have to solve equations (7), (17) numerically. However, before
we do so we consider the case D = 1, which is reducible to a standard form.

3.1. Special case, D = 1

With D = 1 we can add equations (6), (7) and obtain the linear equation

w′′ + (v −E)w′ = 0 (19)

for w ≡ a+ b, subject to the boundary conditions (from (8), (18))

w → 1 as |ζ| → ∞. (20)

The solution of equation (19) subject to (20) is simply

w ≡ 1, i.e., a+ b ≡ 1. (21)

This enables equations (6), (7) to be reduced to the single equation

b′′ + (v −E)b′ + (1− b)b2 = 0 (22)

subject to the boundary conditions

b→ 1 as ζ → −∞, b→ 0 as ζ →∞. (23)
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Equation (22) subject to (23) is the standard cubic Fisher equation (see [1,14],
for example) which has the solution

v =
1√
2

+E, b(ζ) =
1

1 + eζ/
√

2
, a(ζ) =

eζ/
√

2

1 + eζ/
√

2
. (24)

The form for v given by (24) shows that we must have

E > − 1√
2

(25)

for the existence of forward-propagating travelling waves in this case. We also note
that (24) gives a linear relation connecting the wave speed v with E.

3.2. General case, D 6= 1

To determine v and hence bs for the general case, D 6= 1, we have to solve
equations (7), (17) numerically subject to boundary conditions (8), (13), (18). As
in previous studies on travelling waves in cubic autocatalytic systems [1], we need
to consider the behaviour of the solution close to the front of the wave (where the
stationary state (1,0,0) in (a, b, b′) travelling wave phase-space has a zero eigenvalue).
We require the solution to enter this stationary state on the stable manifold associated
with the strictly negative eigenvalue, i.e., in effect requiring that the stationary state
be approached through terms which decay exponentially as ζ →∞. This restriction is
built into our numerical computations (and is implicit in solution (24) for D = 1). This
results in a single wave speed v being calculated from the solution of the non-linear
eigenvalue problem (7), (8), (13), (17) for a given set of parameter values. This is
in contrast to the quadratic autocatalysis case [3,12,19,21–23] where the correspond-
ing problem for the travelling waves is satisfied by a continuous spectrum of wave
speeds. The initial-value problem then determines which of these speeds is attained in
a particular case, usually selected via some “minimum-speed” criterion.

Our previous work on travelling waves in ionic autocatalytic systems [3,12,19,21–
23] has shown that qualitatively different behaviour is observed depending on whether
D > 1 or D < 1. The solution for D = 1 given above also suggests that this could be
a “switch-over” value. This leads us to consider representative values for D for each
case.

For the case D > 1 we took a value of D = 2.0. The results are shown in
figure 1(a) (plots of v against E). There are several points to note about the results
shown in this figure. There is a (negative) value of E (E0 say) at which v = 0. There
is also a lower bound on E (Ec say, with Ec < E0 and where we expect E0 and Ec to
depend on D) for the existence of solutions, i.e., the travelling wave equations have a
solution only for E > Ec. For D = 2.0 we find that Ec = −0.355 (with vc = −0.06).
For Ec < E < 0 there are two solution branches, with the lower solution branch
terminating with v → 0 as E → 0−. There is no upper bound on E for the existence
of solution with, for E > 0, v increasing monotonically as E increases. Hence we can
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(a)

(b)

Figure 1. Plots of v against E, obtained from the numerical integration of the eigenvalue problem (7),
(8), (13), (17) for the travelling waves for (a) D = 2.0, (b) D = 0.5. Asymptotic expressions (52)
and (51) are shown by the broken lines. E0 is the value of E at which v = 0 (given by (29)), Ec is the

bound on E for the existence of travelling wave solutions.

get forward-propagating travelling waves only for E > E0. The single (lower) bound
on E for the existence of solutions is similar to the quadratic autocatalysis case [12],
though in this latter case there is a simple linear relation connecting v with E.



118 J.H. Merkin, H. Ševčı́ková / Reaction fronts in an ionic autocatalytic system

For the case D < 1 we took a value D = 0.5. The results are shown in figure 1(b).
The main point to note about the results shown in this figure is that now there is only
a finite range of E for the existence of forward-propagating travelling waves, with
these being possible only for E in the range E0 6 E 6 Ec. E0 < 0 (as before), but
now Ec > 0, for D = 0.5 we find that Ec = 0.251 (with vc = 0.36). In this respect
the behaviour is similar to the quadratic autocatalysis case [12]. For 0 < E < Ec
there are two solution branches, with the lower branch terminating with v → 0 as
E → 0+. The solution continues smoothly through E0 with v < 0 for E < E0 and |v|
increasing monotonically as |E| increases. We shall see from numerical integrations
of the initial-value problem described below that the upper branch solutions for v are
stable while those on the lower branch are unstable.

We can calculate E0 directly. To do so we put

b =
b

D
, ζ =

ζ

D
, E0 =

E0

D

in equations (6), (7) with v = 0 and leave a unscaled. This leads to the equations

a′′ +
∣∣E0
∣∣a′ − ab2

= 0, (26)

b
′′

+
∣∣E0
∣∣b′ + ab

2
= 0 (27)

(where primes now denote differentiation with respect to ζ) subject to the boundary
conditions (from (18))

a→ 1, b→ 0 as ζ →∞, a→ 0, b→ 1 as ζ → −∞. (28)

Equations (26), (27) subject to (28) are essentially the standard cubic Fisher problem
for equal diffusivities [1,14] and have essentially the solution given by (24). Thus we
can conclude that

E0 = − 1√
2D

. (29)

Note that result (29) agrees with (25) when D = 1. The corresponding result for
the quadratic autocatalysis case [12] is E0 = −2/

√
D, having a different functional

dependence on the diffusion coefficient ratio D.

Asymptotics
The numerical solutions of the travelling wave problem have identified several

asymptotic regimes, namely the form of the wave speed for large (positive or negative)
fields and the behaviour of the lower branch solutions as |E| → 0. We start by
considering the case of strong fields, discussing the cases D > 1 and D < 1 separately.

(i) D > 1, E large (E > 0). We can obtain a solution of equations (6), (7) for
D > 1 valid for E large by first writing

v = DE +E1/3V , b = E2/3B, Y = E1/3ζ (30)
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and leaving a unscaled. This leads to the equations

(D − 1)a′ − aB2 +E−2/3(a′′ + V a′
)

= 0, (31)

DB′′ + V B′ + aB2 = 0 (32)

(where primes now denote differentiation with respect to Y ) subject to

a→ 1, B → 0 as Y →∞,
(33)

a→ 0, B → (D − 1) +E−2/3V

V
as Y → −∞.

An expansion in powers of E−2/3 is suggested. The leading order problem
becomes, after the further transformation,

B =

(
D − 1
V

)
B̃, Ỹ =

(
D − 1
DV

)1/2

Y ,

V1a
′ − aB̃2 = 0,

(34)
B̃′′ + V1B̃

′ + aB̃2 = 0,

subject to

a→ 1, B̃ → 0 as Ỹ →∞,
(35)

a→ 0, B̃ → 1 as Ỹ → −∞,

and where

V1 =
V 3/2

(D(D − 1))1/2
.

The system given by equations (34), (35) is the same as that has arisen previ-
ously [13] from which we obtain a value for V1 as V1 = 0.8609. This gives

v ∼ DE + 0.9050
(
D(D − 1)E

)1/3
+ · · · as E →∞ for D > 1. (36)

From expressions (18), (36) we then obtain

bs ∼ 1.105
(D − 1)2/3

D1/3
E2/3 + · · · as E →∞. (37)

For D = 2.0, expressions (36), (37) become

v ∼ 2E + 1.1402E1/3 + · · · , bs ∼ 0.877E2/3 + · · · as E →∞.
(ii) D < 1, |E| large (E < 0). A similar argument, with essentially the same

scalings (replacing E with |E|), can be applied to the case when D < 1 for large,
negative E. Here we find that

v ∼ DE + 0.9050
(
D(1−D)

)1/3|E|1/3 + · · · as E → −∞ (38)
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with v being negative for E large and negative. Applying (38) in (18) gives

bs ∼ 1.105
(1 −D)2/3

D1/3
|E|2/3 + · · · as |E| → ∞. (39)

For D = 0.5, expressions (38), (39) give

v ∼ 0.5E + 0.5701|E|1/3 + · · · , bs ∼ 0.877|E|2/3 + · · · as E → −∞.

We now consider how the lower branch solutions terminate as |E| → 0, again
treating the cases D < 1 and D > 1 separately.

(iii) E → 0+, D < 1, on the lower solution branch. To determine the behaviour
of the solution on the lower branch as E → 0+ for D < 1, we start in an inner region
where we put

v = E +E2V̂ , a = EÂ, b = EB̂, Ŷ = Eζ.

This leads to the equations

Â′′ − ÂB̂2 +EV̂ Â′= 0, (40)

DB̂′′ + (1−D)B̂′ + ÂB̂2 +EV̂ B̂′= 0, (41)

subject to the boundary conditions

Â→ 0, B̂ → V̂

(1−D) +EV̂
as Ŷ → −∞, B̂ → 0 as Ŷ →∞. (42)

The condition on Â as Ŷ →∞ will be satisfied later.
An expansion in powers of E is suggested, the leading order problem (Â0, B̂0, V̂0)

satisfying, after the further transformation,

Â0 = (1−D)A0, B̂0 =
(1−D)
D

B0, Y =
(1−D)
D

Ŷ ,

the equations

A
′′
0 −A0B

2
0 = 0, (43)

B
′′
0 +B

′
0 +A0B

2
0 = 0, (44)

subject to the boundary conditions

A0 → 0, B0 →
DV̂0

(1−D)2 as Y → −∞, B0 → 0 as Y →∞. (45)

The numerical solution of equations (43)–(45) gives

DV̂0

(1−D)2 = 0.82066 = c0
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and has

A0 ∼ c0Y + d0 as Y →∞, where d0 = 0.98338.

The above expression shows that the expansion is non-uniform and to determine
the scalings for an outer region we need to consider the terms of O(E). The details
are not important, finding that

Â1 ∼
−V̂ 2

0 Ŷ
2

2
+
(
V̂1 − d0V̂0

)
Ŷ + d1, B̂1 → 0 as Ŷ →∞. (46)

Equation (46) shows that the non-uniformity occurs where Ŷ is O(E−1) (i.e., where
ζ is O(E−2). In the outer region we then put

ξ = E2ζ , b ≡ 0 (47)

and leave a unscaled. This leads to the problem at leading order in the outer region

a′′ + V̂0a
′ = 0, (48)

subject to, on matching with the solution in the inner region,

a ∼ V̂0ξ −
V̂ 2

0 ξ
2

2
+ · · · as ξ → 0, a→ 1 as ξ →∞. (49)

The required solution is

a =
(
1− e−V̂0ξ

)
. (50)

From the above we then have that

v ∼ E + 0.82066
(1 −D)2E2

D
+ · · · ,

(51)
bs ∼ 0.82066

(1 −D)
D

E + · · · as E → 0+

on the lower solution branch. Asymptotic result (51) is also shown in figure 1(b) (by
the broken line).

(iv) E → 0−, D > 1, on the lower solution branch. A similar argument to that
given above can be used to describe the solution on the lower branch as E → 0− for
the case D > 1, in effect using |E| for E in the scalings given previously. This leads
to the asymptotic expression

v ∼ E + 0.82066
(D − 1)2E2

D
+ · · · ,

(52)
bs ∼ 0.82066

(D − 1)
D

|E|+ · · · as E → 0−.

Expression (52) is also shown in figure 1(a) (by the broken line).
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4. Numerical simulations

The initial-value problem (2)–(5) subject to the initial conditions described above
was solved numerically using a standard Crank–Nicolson implicit scheme for parabolic
systems. In this forward differences are used to approximate the time derivatives and
the other terms averaged over the time step t to t+ ∆t. The space derivatives are then
replaced by central differences and the two sets of nonlinear algebraic equations that
result solved by Newton–Raphson iteration. This procedure was found to converge
easily in all the calculations performed. A space step of ∆x = 0.1 was used throughout
and an adjustable time step ∆t was used to maintain accuracy (∆t is determined by
covering each time step with first one and then two integrations and choosing ∆t so
that the difference in the two solutions was pointwise less than 5× 10−4).

Our discussion of the travelling wave equations has revealed that different criteria
for the existence of these waves apply for D > 1 and D < 1. We consider these two
cases separately. However, we start with a brief look at the case D = 1, where the
basic equations (2), (3) can be reduced to standard form.

(i) D = 1. Travelling waves were found for all values of E tried, with all these
waves having the same shape (i.e., the cubic Fisher solution) though their propagation
speeds are different. If condition (25) is satisfied we found that the waves propagated in
the same direction as they were before the field was switched on and, if this condition
is not satisfied, they reversed direction. This is illustrated in figure 2 (for E = 1.5).
(In this, and subsequent figures, the concentration profiles shown by the broken lines
are the wave profiles at the point that the electric field was switched on.) This is an
example where E < −1/

√
2 for the left-propagating wave and we can see that the

direction of propagation of this wave has changed. The right-propagating wave has an
increased speed. In both cases the wave profiles remain unchanged. The wave speeds

Figure 2. Wave profiles obtained from the numerical solution of the initial-value problem (2)–(5) for
D = 1.0, E = 1.5. The broken lines are the concentration profiles just before the electric field was
switched on, at t = 60.0. The profiles well after the field has been switched on (full lines) are at t = 110.3.
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calculated from the numerical solutions all correlated well with the values given by
expression (24).

(ii) D > 1. Here we took a representative value for D as D = 2.0. In this
case E0 = −0.3536 with forward-propagating waves being predicted for all E > E0

(figure 1(a)). If we take a value of E such that −E > E0, then travelling waves are
formed, propagating in both directions. This is illustrated in figure 3(a), where we
plot wave profiles obtained from the numerical simulation for E = 0.25. This is a
case where the direction of propagation of both waves remains unchanged when the
electric field is switched on (here at t = 50.0), with the speed of the right-propagating
wave increased and that of the left-propagating wave decreased. These speeds were
calculated from the numerical simulation as vR = 1.722 (right-propagating wave) and

(a)

Figure 3. Wave profiles obtained from the numerical solution of the initial-value problem (2)–(5) for
D = 2.0. The broken lines are the concentration profiles just before the electric field was switched on,
at t = 50.0. The profiles well after the field has been switched on (full lines) are for (a) E = 0.25 at

t = 170.3, (b) E = 0.5 at t = 290.1, (c) E = 1.5 at t = 139.1.
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(b)

(c)

Figure 3. (Continued.)
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vL = 0.396 (left-propagating wave) as compared with a wave speed of 1.095 without
the electric field. Both vR and vL agree well with the values determined from the
travelling wave equations (7), (8), (13), (17). We see that the concentration of B+

behind the right-propagating wave is increased when the field is switched on, to a
value bs,R = 1.205 and is decreased to bs,L = 0.721 behind the left-propagating wave.
This is in accord with expression (18).

As well as the travelling waves there is also a purely electrophoresis front in
B+ propagating to the right with a speed DE (and spreading slowly by diffusion). In
this electrophoretic front the concentration of A+ is zero (and hence no reaction takes
place). The structure of this front is, for t large, given by

b ∼ 1 +
(bs,R − 1)√

π

∫ η

−∞
exp
(
−s2) ds, η =

(x−DEt)
2
√
Dt

. (53)

There is a further, purely diffusive structure in B+ centred at the origin, in which

b ∼ bs,L +
(1− bs,L)√

π

∫ η

−∞
exp
(
−s2) ds, η =

x

2
√
Dt

, (54)

for t large. It is through these two structures (53), (54) that the differences in the
concentrations of B+ at the rear of the right- and left-propagating waves are accom-
modated. The wave profiles for the substrate A+ appear virtually unchanged after the
field is switched on.

If we now take a value of E such that −E < Ec, we still obtain a travelling
wave propagating to the right. This is illustrated in figure 3(b) and (c) for E = 0.5 and
E = 1.5, respectively. The speeds of these waves, as calculated from the numerical
simulations, vR = 2.322 and vR = 4.602, agree well with the speeds determined from
the travelling wave equations, as do the concentrations of B+ at the rear of these
waves, bs,R = 1.379 and bs,R = 1.936, respectively. Note that bs,R increases with E,
as suggested by (18) and (37). As before, the wave profiles in A+ remain virtually
unaffected by the electric field.

There is a qualitative change in the structure of the left-propagating wave after the
field is switched on. Now electrophoretic separation of substrate A+ and autocatalyst
B+ occurs, with distinct profiles in these species being formed. The direction of
propagation is reversed, these electrophoresis fronts in A+ and B+ propagate to the
right with speeds |E| and D|E|, respectively, becoming increasingly separated as t
increases. This is a relatively slow process for E = 0.5 (figure 3(b)) where separation
has not been fully achieved even at t = 290.1, whereas it is much more rapid for larger
values of E (figure 3(c)). For t large, the structure of these electrophoresis fronts is
given by

a ∼ 1√
π

∫ ∞
ξ

exp
(
−s2) ds, ξ =

(x− |E|t)
2
√
t

,

(55)

b ∼ 1√
π

∫ ξ

−∞
exp
(
−s2) ds, ξ =

(x−D|E|t)
2
√
Dt

.
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There is (as in figure 3(a)) another electrophoresis front in B+, whose structure is
given by (53) for t large, also propagating to the right with speed DE, through which
the higher concentration of B+ at the rear of the right-propagating travelling wave is
achieved.

Finally, we considered a value of E in the (narrow) range Ec < E < E0,
where a travelling wave solution exists but has a negative velocity (figure 1(a)). In
this case we again find travelling waves after the field has been switched on, the wave
propagating to the right having its speed increased. The wave propagating to the left
is slowly decelerated until its direction is reversed, finally propagating slowly to the
right. This suggests that v going through zero at E0 does not cause any problem with
regard to travelling wave formation and, for E = E0, we will obtain a stationary wave
front.

(iii) D < 1. Here we took D = 0.5, with forward-propagating waves being
predicted only for E in the finite range E0 < E < Ec where, for this case, E0 =
−1.4142 (= −

√
2) and Ec = 0.2511 (figure 1(b)). For E in this range, travelling waves

are initiated, with their direction of propagation unaltered after the electric field is
switched on. This is illustrated in figure 4(a) for E = 0.2. The wave speeds calculated
for this case are vR = 0.427 and vL = 0.396, in agreement with figure 1(b). Note
that both of these speeds are less than a speed of 0.435 when no field is applied. This
effect is dependent on the value of E chosen, small (positive) values of E accelerate
the right-propagating wave, the maximum forward speed occurring at E = 0.106
(figure 1(b)). In figure 4(a) we see that, in this case, the concentration of B+ at the
rear of the right-propagating wave is decreased (to bs,R = 0.694) and is increased
behind the left-propagating wave (to bs,L = 1.202), as follows from (18). As was
found for D > 1, the wave profile in the substrate A+ appears to be mostly unaffected
by the electric field.

We next consider a value of E such that E > Ec and E < |E0|. This case is
illustrated in figure 4(b) for E = 1.0. There is still a travelling wave propagating to
the left, with speed vL = 0.151 as calculated from the numerical simulation, with the
concentration of B+ at its rear increased to bs,L = 1.768. However, electrophoretic
separation occurs in the right-propagating wave and distinct fronts in A+ and B+

are formed. These propagate with speeds E and DE, respectively, and so become
increasingly separated as t increases. The structure of these electrophoretic fronts is
essentially given by (55) for t large.

If we increase E so that it lies outside the range E0 < E < Ec, then we
still have complete electrophoretic separation of A+ and B+ formed from the right-
propagating wave, as can be seen in figure 4(c) for E = 2.0. The difference between
this and the previous case (figure 4(b)) is that now the travelling wave formed from
the left-propagating wave has its direction of propagation reversed. With the electric
field switched on, this propagates to the right with speed vL = −0.227 (having an
increased concentration of B+ at its rear, bs,L = 2.294). This behaviour continues
as E is increased still further, with complete electrophoretic separation of the right-
propagating wave, so that v passing through zero at E = E0 has only the effect of
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(a)

(b)

Figure 4. Wave profiles obtained from the numerical solution of the initial-value problem (2)–(5) for
D = 0.5. The broken lines are the concentration profiles just before the electric field was switched on,
at t = 60.0. The profiles well after the field has been switched on (full lines) are for (a) E = 0.2 at

t = 400.2, (b) E = 1.0 at t = 530.8, (c) E = 2.0 at t = 272.3.
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(c)

Figure 4. (Continued.)

reversing the direction of propagation of the initially left-propagating wave and does
not produce any further, qualitatively different structures.

To complete this section we compare briefly the results for the present model
with those for quadratic autocatalysis [12]. A feature seen here and not in [12] is the
range of E over which there are two solutions to the travelling wave equations. All our
numerical solutions to initial-value problem (2)–(5) approached the solutions on the
upper branch as t increased (for both D > 1 and D < 1). This suggests that these upper
branch solutions are stable and the lower branch solutions temporally unstable. Further
numerical integrations, starting with initial conditions close to lower branch wave
solutions, moved away from these initial conditions and towards the corresponding
upper branch solution, again suggesting that these lower branch solutions are unstable.
A similarity with [12] is the complete electrophoretic separation of the A+ and B+

profiles. For both quadratic and cubic autocatalysis, these fronts propagate back into
the fully reacted region for D > 1 and forward into the unreacted region for D < 1.
A further similarity between the two cases is the existence of travelling waves with
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negative velocities. In both cases, this leads to waves whose direction of propagation
is reversed, i.e., they propagate back into the already reacted region, after the electric
field is switched on.

5. Discussion

The iodate–arsenous acid reaction is one that is used to demonstrate propagating
reaction fronts and, when arsenous acid is in stoichiometric excess, the reaction can
be effectively modelled by a cubic autocatalytic rate law [6,7,14,18]. The influence
of electric fields on fronts propagating in a reactor using this reaction have been
reported originally in [15], with the results from a much more extensive study of this
system being presented in [4,5]. These latter studies showed particularly clearly that
the effects of applying the electric field are strongly dependent on the stoichiometric
factor R = [H3AsO3]0/[IO−3 ]0 (the ratio of the initial concentrations of arsenous acid
and iodate).

To model the reaction purely by cubic autocatalysis (without an electric field)
requires R > 3 [10] and it is only this case that we consider here. In figure 5 we show
wave speeds V measured from a series of experiments, each with R = 3.1, plotted
against the applied field E . We note that the ionic species, mainly IO−3 and I−, are
negatively charged and, hence, the applied field acts in the opposite sense to that in our
model. (Alternatively, this is equivalent to a change in sign of E.) The experimental
results show that the wave speed is increased with E negative and decreased with E
positive. This agrees with the results from our model (with the required change in
sign of E), see figure 1, for example. There is also a positive field strength at which
the wave is brought to rest (in the experiments V ' 0 at E = 5.0), again in line with
our model (expression (29)).

For sufficiently strong positive fields, the final outcome of the reaction taking
place within the propagating front can be altered qualitatively [4,5]. This is observed
through monitoring the formation of I2 using starch as an indicator. In the present
case, I2 is an intermediate without the electric field, but in a positive field it can
become a reaction product, remaining after the passage of the front. This makes direct
comparison with our simple model unreliable, though the trends are the same. This
does not happen in negative fields (I2 is an intermediate in all cases) and so comparisons
can be made. Expressions (36), (38) give a linear relation between speed and field
strength for strong fields, positive or negative depending whether D < 1 or D > 1.
Figure 5 suggests a linear relation between V and E for sufficiently large negative
values of E (for |E| > 10). This is consistent with having D > 1 (figure 1(a)). The
values quoted for the diffusion coefficients of the ionic species [15] give D ' 1.44,
though this value could well be unreliable as it is known that the presence of starch in
the reaction mixture can significantly alter the effective diffusion coefficients of these
species [8].

A feature seen in our model is the possibility of complete electrophoretic sepa-
ration of the reacting ionic species. We could expect this feature to be present in the
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Figure 5. Experimental observations for the iodate–arsenous acid reaction with stoichiometric factor
R = 3.1, plotting the measured wave speed V (mm/min) against the applied electric field E (V/cm).

iodate–arsenous acid system and, for this system, it would mean that the reaction had
stopped. Thus the production of I2 (as observed through colour changes in the starch)
would cease, giving the appearance that wave propagation had ceased. This feature has
been reported in the experiments [15] where it was suggested that the ionic species do
become fully separated in relatively high (positive) fields (E > 7 V/cm) (correspond-
ing to negative E in our model). On switching the field off again, the reaction was
observed to restart after some further time had elapsed with a wave front being seen
initially at approximately the same position as it was when the front ceased to exist.
This new front then propagates while the dark zone of non-zero I2 concentration gets
lighter and finally disappears. The electrophoretic separation of the main ionic species
seen in our model for sufficiently high field strengths could provide an explanation for
this.

The detailed study of the iodate–arsenous acid system [4,5] has revealed that the
effects of applying electric fields to propagating waves are much more complex than
can be accounted for by a model relying only on a single autocatalytic rate law. This
is particularly evident for reaction mixtures which have R < 3. A more systematic
theoretical treatment, based on more realistic kinetics (the Dushman–Roebuck scheme,
for example), is required to unravel all the observed features. This has been undertaken
for a prototype two-step system [11] and is, at present, being considered for realistic
models of the iodate–arsenous acid kinetics.
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132 J.H. Merkin, H. Ševčı́ková / Reaction fronts in an ionic autocatalytic system

[20] D. Snita and M. Marek, Transport and reaction in ionic chemical systems, Physica D 75 (1994)
521–540.
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